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A new Chebyshev pseudospectral technique (based on the projection method that was 
previously applied by the authors to the solution of two-dimensional incompressible Navier- 
Stokes equations in primitive variables for nonperiodic boundary conditions) is extended to 
solve the three-dimensional Navier-Stokes equations. The crucial point of the method is the 
requirement that the continuity equation be satisfied everywhere in the domain, on the boun- 
daries as well as in the interior. The key feature of the work presented in this paper is that the 
computer storage requirements of the full matrix inversion resulting from direct solution of the 
pressure Poisson equation in three dimensions is greatly reduced by considering an eigen- 
function decomposition. The method was tested on a two-dimensional driven cavity flow and 
the results were compared with those of the most accurate finite-difference calculation. The 
three-dimensional driven cavity flow was then calculated at the same Reynolds numbers as the 
two-dimensional cases, i.e., Re= 100, 400, and 1000. In the calculated resuits, three-dimen- 
sional boundary effects were observed in all cases and became more apparent with increasing 
Reynolds number. t> 1987 Academic Press, Inc. 

1. INTRODUCTION 

A number of finite difference solutions of the three-dimensional incompressible 
Navier-Stokes equations have been presented. The formulations include vector 
stream function-vorticity by Mallinson and de Vahl Davis [I], vcloc~ty-vort~eity 
by Dennis et al. [2], velocity-potential by Kim and Moin [3] and ~rirn~~~ve 
variables by Goda [4], as well as an improved TEACH-2E code by Freitas et ~2. 
[S]. Although there are three different kinds of formulations, the one based on the 
primitive variable form appears to be the least complex for solving the three-dimen- 
sional Navier-Stokes equations. As a result, that is the approach used in t 
present paper. 

The applicability of high accuracy pseudospectral (or spectral) methods to the 
solution of three-dimensional Navier-Stokes equations has been limi 
problems that admit periodic pressure boundary conditions in one or more 
sions. The reason for this is that it permits one to reduce the complexity of solving 
for the pressure field. Fully periodic solutions were initially employed by 

439 
0021-999&W 53.00 

Copyright 0 1987 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



440 KU, HIRSH, AND TAYLOR 

and Patterson [6] as well as by Riley and Metcalfe [7]. Subsequently, flows 
without periodicity in one direction were considered by Orszag and Kells [S], 
Deville et al. [9], and Moin and Kim [lo]. In this paper we extend the approach 
to flows without any periodic boundary conditions. 

In a companion paper [ 111 the authors addressed techniques and boundary con- 
ditions that could be easily extended to three dimensions. The discussion in that 
paper provides a foundation for the material presented here and may serve to 
answer questions. From that investigation it was determined that the Chorin pro- 
jection or time splitting method [ 121 with the continuity equation as the boundary 
condition for pressure produced accurate solutions for two-dimensional problems. 
Furthermore, the results suggested that use of the continuity boundary condition 
yielded a better solution than when the classical momentum-equation-derived 
Neumann boundary condition was employed for pressure. This reflects the fact that 
there is no natural pressure boundary condition other than a divergence-free field. 
The application of the continuity equation at the boundary permits one to satisfy 
the incompressibility constraint everywhere to machine accuracy. As a result of the 
success of the two-dimensional investigation, the authors have employed the same 
approach for a three-dimensional flow in this paper. We note that the influence 
matrix method of Kleiser and Schumann [13] yielded similar accuracy to the 
approach used in the paper on two-dimensional flows [ 111; however, its extension 
to three-dimensional problems is more complicated and, therefore, was not con- 
sidered here. 

The splitting method used in this study, as in most primitive variable approaches, 
yields a three-dimensional Poisson equation for the pressure. This presents a 
problem, since applying a Chebyshev pseudospectral matrix approach to solve the 
equation results in a large full matrix to invert, in contrast to the sparse banded 
matrix generated by a finite difference approach. Thus, in order to make the 
pseudospectral approach competitive, improved techniques for solving the matrix 
problem are required. Methods are available that can overcome the difficulty 
associated with the matrix inversion. These can be cast into two main categories: 
(1) direct reduced storage solutions or (2) iteration schemes. The direct solutions 
incorporating matrix diagonalization have been used by Haidvogel and Zang [14] 
in the two-dimensional case, Haldenwang et al. [lS] and Tan [16] in the three- 
dimensional case. The iteration schemes use preconditioning with a simple linite-dif- 
ference predictor as displayed by Orszag [17] or a finite-element as shown by 
Deville and Mund [1X] and then use the pseudospectral method as a corrector. 
Different iteration schemes such as Richardson, Chebyshev, conjugate gradient, and 
multigrid (Zang et al. [19]) are used to converge the iteration. For most of the 
research, however, the boundary conditions were restricted to those of Dirichlet, 
mixed, and less for Neumann type. A direct solution method for the equation using 
the pseudospectral matrix method [20] with the continuity equation as the 
pressure boundary condition is presented in this paper. The key advance is that the 
typical computer storage for a direct three-dimensional matrix inversion is greatly 
reduced from 0(N6) to O(N3), where N denotes the number of grid points in one 
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direction, This facilitates running of the three-dimensional program on a rn~~ro~~rn~ 
puter system. 

The paper is divided into eight sections; the first being the ~~trod~ctio~. Section 2 
includes the general formulation of the derivatives by the pseudospectral matrix 
technique and in Section 3, the physical problem with suitable boundary con 
is described. Section 4 addresses the detailed numerical rocedure for solving the 
three-dimensional Navier-Stokes equations in the primi 
Section 5, a direct and fast real-space pressure Poisson s 
trast to the spectral-tau method). Section 6 outlines the stability 
time step as well as computing time and the modified “cycle” con 
to accelerate the solution to reach the steady state. Se 
obtain using the new Poisson solver for a two-dimensio 
proble and compares them with the most accurate finite- 
Ghia et al. [Zl]. Section 8 gives the conclusions. In a 
three-dimensional case at Reynolds numbers of 100, 4 

2. CALCULATION OF DERIVATIVES BY USING MATRIX 

ith the collocation points selected as xj= cos[n(j- 1 )/N], a smooth function, 
f(x), defined on x E [ - 1, 1] when expanded in Chebyshev polynom has first 
and second derivatives, in discrete form [ZO], that are approximately 

Ntl 

f"bj) = c Q2iYl> (lb) 
I= 1 

with q = 1, 2, and G(*) = G(‘)G(‘), where ) G(l), T is an 
(Ns 1) x (N+ 1) matrix with elements 

q) = 

i 

0 if i>j or 1’Sjiseven 
Mj- 1 YCJ otherwise (6, 2, Ci 4 for i 3 2) (2b) = = 

and 

2 nisi=-- _ _ cos 4- l)(j- 1) 
N 

(Zil=CNC1=2,Ci=1for1<i<N+¶j. (2~) 
NCi c, 

hen the domain of interest is [O, 11, the above expressions are 
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shown in [22]. When a symmetry boundary condition applies at x = 0, the 
derivatives of a function with x E [0, 1 ] are given by 

N/2 + 1 

f ‘(x,) = 2 esjy,l)f, 

i=l 
@a) 

N/2+1 

f “(Xi) = C GS,!,2) fl, (3b) 
I= 1 

where 

(4) 

and j = l,..., N/2 + 1. When an antisymmetry condition at x = 0 applies. Eq. (3) is 
replaced by 

N/2 + 1 

f ‘(xi) = c eAj,‘)fi (54 
l= 1 

where 

N/2 + I 

f “(xi) = 1 6Aj2) fi, (5b) 
I= I 

l<N/2+1 
l=N/2+1 (6) 

and j= l,..., N/2 + 1. 
Note that all the calculations are manipulated in physical space rather than in 

the spectral space. As indicated by Street et al. [23] the matrix-multiply approach 
(in Fortran) can be significantly faster than FFT’s (in assembly language), when 
the number of collocation points in a direction does not exceed approximately 100. 

3. GOVERNING DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS 

The three-dimensional cavity flow in a cubic box (Fig. 1) can be represented in 
terms of a primitive variable formulation. In Cartesian coordinates, the time-depen- 
dent Navier-Stokes equations in nondimensional form can be written as 

au au au ap ;It+uax+v-+w~= -ax+&v2u 
ay (7a) 

a0 a0 au au ap w-= --+Lv2v 
dt+"Z+v&+ aZ ay Re 0) 

aw aw aw aw ap I w-c --++v2w 
t+"Z+v2jJ+ az & Re 

d”+a”+cY=(), 
ax ay az 

(7c) 

WI 
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FIG. 1. Three-dimensional cavity flow configuration and coordinate system. 

where 

and Re is the Reynolds number, pUl/p, where p is the density, U is the velocity of 
the moving lid, 1 is the length of the cubic box, and p is the viscosity. 

Equations (7a)(7d) are only solved for half of the cubic box due to the 
assumption of symmetry of the configuration about the plane z = 0.5. The initial 
and boundary conditions are given by, for r > 0, 

U=V=W=() 

u= 1, v=w=o 

u=v=w=o 

u=v=w=o 

atx=O and x=1 

aty=l 

aty=O 

atz=l 

au avGE-() w=o 
aZ=Z a2 ' ' at z = 0.5 

and for t = 0, 

u=v=w=o 1 OGx~l,O~y~1,Odz~1. (9: 

The boundary conditions of Eqs. (8a) and (8b) will produce a jump in the soiution 
at x = 0 and x = 1 at y = 1. In order to avoid this numerical complexity, the boun- 
dary conditions were adjusted over a few points so that at x = 0 and x = 1 the 
values were zero and at the next points on y = 1, u = 0.3, and 1.0, respectively. The 
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close spacing of the Chebyshev points near the boundary should make this 
approach a reasonable approximation to the original problem. A test was conduc- 
ted to determine the sensitivity of the solution to this approximation. The value of 
0.3 was increased to 0.5 and the impact was a third decimal place change in the 
interior solution at nearby grid points. As a result it was concluded that the 
approximation was adequate. 

4. FORMULATION BY THE PSEUDOSPECTRAL MATRIX METHOD 

The method applied in this study is Chorin’s [ 121 splitting technique.’ For this 
scheme, the equations of motion, in tensor form, are 

where Fi = (l/Re)(a’u,/&$) - uj(&Q3xj). 
The first step in the method is to split the velocity into a sum of a predicted and 

corrected value. The predicted velocity field is determined by time integration of the 
momentum equations without the pressure terms in the form 

$+I- I uy= A@‘. (11) 

The second step is to develop the corrected velocity field that satisfies the continuity 
equation by using the relationships 

and 

au”+1 
i zz 0. 

ax, 

(12a) 

(12b) 

The discretization of Eqs. (12a) and (12b) by the aforementioned pseudospectral 
matrix method takes the form 

NX+ 1 

~1;: = ii;;: - At / * C &Y!‘~p,,j, k (13a) 
m=l 

NY+ I 
v;;; = 6;;: - At , , 1 &y$)pi, ,, k 

/= 1 

NZf2 + 1 

w;f: = W:;: - At C , / &‘y,,pi,i,n. 
n=l 

(13b) 

(13c) 

Note that only half of the grid points, NZ/2 + 1, are needed in the z direction due 
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to the geometric configuration. Hence z-dependent variables u, v, and p are expan- 
ed in a symmetric form, while w  is expanded in an antisymmetric for 

resulting matrix forms have been indicated in Eqs. (3) and (5), res~e~t~v~~y~ 
By requiring that the velocity components u;;:, II:::, and w;$ satisfy the con- 

tinuity equation throughout the whole domain, and with the incorporation of 
prescribed velocity boundary conditions (which ere described in 
[ 11,24]), the substitution of Eqs. (13) into Eq. (12 yields the followin 
form 

NY+ 1 NZ/2 i 1 

Bxf. mpm, j, k + c BYj,,pf,,,k + 1 BZk,nPt,j,n 

m=l I= 1 n=l 

in the interior for i = 2 ,..., NX, j = 2 ,..., NY, and k = 2 ,..., NZ/2 + 1, where 

BX;, m = y Gx!‘; GM:‘!, 
p=2 

BYj./= y c?Yj,‘;GY~~,, 

y=2 

and 
NZi2 

BZk, n = c ~A~!~&$‘~. 
r=2 

At the boundaries, with prescribed velocity conditions where i= 1 (x = 1) an 
i = NX+ 1 (x = Q), the supplemental pressure equation is related to the ~onti~~~ty 
equation, i.e., h/ax = - (I%/+J + &j&z), so that 

NXfl 

C BXi, ,p,,j, k = & r GX,!,l?,tih>fk + GXi.‘)U;,;,i + GXi:,$x+ 1 UnN+x!+ i,j, k 
m=l ( m=2 

NY+1 NZj2 i 1 

+ c GY,!,‘)u;:;+ c i;Akliw;$. 

i 
(Iha) , ,/ 

I= 1 n=I 

In the y direction, at j = 1 (y = 1) and j = NY + I (y = O), i.e., du/dy = -(au/ax + 
&~/az), the supplemental pressure equation is 

NY+i 

c 
/=l 

NXfl NZ/2 + 1 

+ 1 ex$4”,r’i,1k+ c (16b) 

m=l n=l 

sa1/70/2-12 
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In an analogous manner, at k = 1 (z = l), i.e., aw/dz = -(au/ax + au/@), we have 

NY+ 1 

(16~) 

Equation (14), together with supplemental Eqs. (16) at the boundaries, constitutes 
the overall solution for the unknown pressure, with which continuity is satisfied to 
machine accuracy. What is more important, the pressure Poisson equation is a 
linear operator, and only an initial matrix inversion is required. The stored matrix 
inversion coefficients can then be used for all the following time steps to compute 
the pressure solution. Despite the advantage of the linear operator for the pressure 
equation, the remaining aspect is the challenge of how to solve the huge three- 
dimensional matrix without constraints on the size of the computer storage. This 
question is dealt with in Section 5. 

5. A DIRECT AND FAST PRESSURE POISSON SOLVER 

The three-dimensional pressure Poisson equation can be solved either in real 
space of spectral space. Gottlieb and Orszag [25], Haidvogel and Zang [14], and 
Tan [16] employed a spectral space approach that is sometimes called the tau 
method. However, the real space pseudospectral solution approach seems to be 
more straightforward in dealing with boundary conditions. As a result, this is the 
approach adopted here. The method is similar to the tensor product method [26] 
used by Murdock [27] for two-dimensional flows in that eigenfunction expansions 
are used to reduce differential operators in the Poisson equation to algebraic 
relationships, but differs considerably in implementation. In this approach two 
spatial operators are reduced in the three-dimensional problem and the resulting 
one-dimensional second order equation is solved using a matrix method that has 
been previously described [22]. 

The method proceeds by first simplifying the right-hand sides of Eq. (14) and the 
supplemental pressure Eqs. (16) by defining a source term, S,,j, k. Equation (14) 
then becomes 

NX+l NY+ 1 NZ/2 t 1 

C B*i,mPm,j,k+ C BYj,,Pi,,,k+ C BZ,.Pi,j,n=Si,j,k 
m=l I= 1 n=l 

(17) 
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and the boundary conditions based on continuity take the form 
NX+ 1 

1 BXi, r&m, j, k = si, j ,  k 2 l’=l,AW+I 618al 
m=l 

and 

In order to develop an eigenfunction expansion with real eigenvalues for the 
operators in Eq. (17) it is necessary to first subtract out or remove boundary 
pressure terms. This can be accomplished in the x and y direction if one uses the 
continuity equation conditions given by Eqs. (18a) and (18b). From these 
equat10ns2 Pl.j.kj PNX+l,i,k7 Pi,l,k, and pi, ,,, *+ 1. k can be expressed in terms of field 
variable in the interior, accordingly, 

and similarly, 

Pi. 

r NY 



448 KU, HIRSH, AND TAYLOR 

Substitution of Eqs. (19) and (20) into Eq. (17) gives 
NX 

C BX?mPm,j,k+ Y BYf,Pi,I,k+ Nz~+lBZ,.,,Pi,j,.=S,*j,k; 
m=2 I=2 n=l 

2<kdNZ/2+1 

and 
NZ/2 + 1 

C BZk, nPi,j, n = Si,j, k> k= 1. 
?I=1 

Note the change of limits on the first two sums in Eq. (21a), as compared to 
Eq. (17). Here Si, j, k = S,Ti, k at k = 1 and BX&, BYfI, and s,Ti, k are 

BJ’tm=BXi,nz+ CBX~,N~+~(BXN~+~,~BX~,,-BX~,~BXN~+l,,) 

-BX~,~(BXN,+~,N,+~BX~,,-BXI,N,+~BXN,+~,,)I/ 

(BXNX+~,NX+~BX~,~-BXNX+~,~BXI,NX+~) (224 

BYjTI=BYj,,+ CBYj,NY+l(BYNY+l, IBYI,~-BY~, lBY,vy+l,~) 

~~~~,l~~~~y+l,Ny+~~~l,~~~~l,NY+l~~~y+~,~~l/ 

(BYNY+~,NY+~BY~,~-BYNY+~,~BY~,NY+~) (22b) 

and 

Sfj,k=Si,j,k+ [BXi,,(BX,,NX+lsN,+l,j,k-‘X~,.,,N,+l~l,j,k) 

-BXi,NX+l(BXI,lSNX+l,j,k-BXNX+l,lSl,j,k)l/ 

(BxNx+ I, NX+ IBXI, I -B~Nx+ I, IBXI, NX+ I) 

+ [BYi, l(BY l,NY+lSi,NY+l,k-BY~~+l,NY+lSi,l,k) 

-BYj,NY+l(BYl,lS,NY+i,k-BYNY+l,lsi,l,k)ll 

(BYNY+~,NY+~BY~,~-BYNY+~,~BYI,NY+~). (22c) 

We can now diagonalize the matrix BX* of dimension (NX - 1) x (NX - 1) and the 
matrix BY* of dimension (NY- 1) x (NY- 1) as 

EX-‘BX*EX=A (234 

EY ~ ‘BY *EY = x, Pb) 

where A is a diagonal matrix of dimension NX- 1 with diagonal elements ai as the 
eigenvalues of the matrix BX*, and 1 is a diagonal matrix of dimension NY - 1 
with diagonal elements fij as the eigenvalues of the matrix BY*. The matrices EX 
and EY are the corresponding eigenvectors associated with each eigenvalue. The 
IMSL eigensystem routine EIGRF has been used for this in these computations. 
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If the solutions of pressure is expanded in a series of the eigenfunctions such that 

and the source term such that 

S* = EX $* EYT, 

where the superscript T denotes the transpose of the matrix, then the corn 
solution of pressure is obtained by a linear superposition of the eigenfunctions an 
its associated eigenvalues. Equations (24) are substituted into Eqs. (21) an 
of Eqs. (23) Eqs. (21) are reduced to 

NW2 t 1 

BZksn~i,j,n + c”li+ flj)bi, j,k = s:j, k? 26b-diVZJ2$1 (25a) 
n=l 

and 

NZf2 + 1 

C BZk,ntji,j,n=z~j,k, k= 1, 

n=l 

for each i = 2,..., lVx, j = 2 ,..., NY. 
Equation (25a) with the boundary condition of Eq. (25b) represents a one- 

dimensional matrix inversion to find di,,, k, The resulting pressure is then calculate 
using Eq. (24a). Note that all the matrix operations are simple one-dimensional 
matrix operations, which require much less computer storage than the three-dimen- 
sional system. Also all of the operational matrices EX, EY, EXT, and EYa: the 
eigenfunctions, and the solution of Eq. (25a) can be pretabulated and stored in the 
computer so that only matrix multiplies are required to compute the pressure at all 
future time steps. 

The key feature of the technique is in the decomposition of the original three- 
dimensional matrix. Instead of the typical LU decomposition, eigenfunctions and 
eigenvalues have been used to decompose the matrix. As a result, in the final 
equation to be solved it is necessary to deal with a matrix of dimensions 
(NZ/2 + 1)2 rather than one of (NX)2 x (NY)2 x (NZ/2 + 1)‘. The consequence of 
these steps has been to reduce the minimum storage requirements for direct matrix 
inversion from 0[(iVX)*(iVY)“(NZ/2 + l)‘] to O[(NX)(NY)(NZ/:! + l)]; i.e., the 
minimum storage requirement is no longer limited by the reduced matrix inversion, 
O(N2), but the storage of the field variables themselves, 0(N3). This is an ~rn~~~t~~t 
result that permits use of much smaller computers to perform direct solution of the 
Poisson equation. One should note, however, that the reduced storage does not 
imply a large reduction in CPU operation count, but it does imply less storage 
access time, which is time-consuming in performing a calculation on a computer” 
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6. COMPUTER TIME AND TIME-STEP LIMITATIONS 

When using Chebyshev expansions in each direction for the computation of time- 
dependent problems, one can encounter a restricted time step for explicit time 
integration schemes as indicated in Eq. (11). For a diffusion-dominated problem, 
the critical time step is 0(Re/N4), while the critical time step for a convection- 
dominated case is 0(1/N2). 

By examining the splitting scheme adopted here, we find that the time constraint 
depends only on the first step and is independent of the second step, where con- 
tinuity is satisfied by the pressure field. To determine the condition under which 
Eq. (11) is stable, consider the discrete L, norm of U’+ l, 

11~“+111 d Il~-~~H(u”)ll llunlI, 

where the operator H contains u,(a/ax,) - (l/Re)(L?“/axf), j = 1,2, 3. 
Equation (26) is satisfied if 

(26) 

6t< 0 
! 

1 

maxi,i,k(l~:i,kl iw2+ l~;~,~l NY* (27) 

+ Iw;J NZ2)+(1/Re)(NX4+NY4+NZ4) 

Note that Eq. (27) clearly indicates that the time step is restricted not only by the 
diffusion term but also by the convection term when Re 3 100. For the case of two- 
dimensional cavity flow, the time steps at Re = 100 and 400 with 25 x 25 modes are 
5 x lop4 and 7 x 10e4, respectively. At Re = 1000 with 31 x 31 modes, the time step 
is 5 x 10e4. To be specific, the two-dimensional case with 25 x 25 modes ran in 4.2 
set/time step and the 31 x 31 modes ran in 7.6 set/time step on a VAX 1 l/750. 
Generally, in order to reach the steady state, it takes 15,000 to 30,000 times steps 
with increasing Reynolds number. In the case of three-dimensional driven cavity 
flow, the two-dimensional solutions were provided as initial conditions, and the 
same time step was used. The 25 x 25 x 13 mode case runs in 11.1 set/step for 
Re = 100 or 400, and the 31 x 31 x 16 case in 20.0 set/step for Re = 1000 on a VAX 
1 l/780 with an FPS-164 array processor. Under these conditions it takes only 7,500 
to 25,000 time steps to obtain the steady state solution. 

At interesting test of the computations was made using a VAX performance 
analyzer. It showed that approximately 40% of the total CPU cost at each time 
step was used to compute the updated pressure and corrected velocity field. In 
order to reduce this, a technique similar to the subcycling technique proposed by 
Gresho et al. [28] may be used. In this technique, during every few steps (called a 
cycle) an approximate velocity field is estimated by using the pressure gradient 
extrapolated from the previous cycle, i.e., the true “current pressure” and the con- 
tinuity equation is neglected during the cycle. At the end of each cycle, this slightly 
compressible flow is corrected through the regular procedure to insure that the 
incompressibility constraint is satisfied and the pressure gradient is updated. This 
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technique would be especially effective for slowly varying fiows or those that 
approach steady state. The number of time steps that can be included in each cycle 
would have to be determined by testing and typically far less could be used at the 
early transient state than at the end of steady state. Note, however, that fo 
technique used in this paper the maximum speed-up using this approach wou 
less than 40%. 

7. RESULTS AND DISCUSSION 

This section discusses the results obtained for the two- and three-d~rn~~si~~a~ 
cavity flows. First, computation of the flow in a two-dimensional square cavity 

-0 0.2 0.4 0.6 0.8 1 
x 

FIG. 2. Streamline pattern for Re= 100 with $,,,= -0.10367; (a) contour letter a = 

b= -0.1, c= -0.09, d= -0.08, e= -0.07, f= -0.05, g= -0.05, h= -0.04, i= -0.03, j= 

k= -0.01, i= -0.001; (b) Re=400 with I,//,,,= -0.11370; (c) Re= PO00 with $,,,= -0.11619. 

-0.:1, 

-0.02, 
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using a primitive variable formulation is examined for Re = 100, 400, and 1000, and 
then results are compared with those of the most accurate finite-difference method 
in streamfunction voriticity formulation. Next, the results for a cubic cavity flow are 
presented for the same Reynolds numbers. 

Since the technique for the three-dimensional case is essentially the same as that 
for the two-dimensional case, testing of the method on a two-dimensional square 
cavity flow for which other results exist makes it possible to ensure the validity of 
the present algorithm for a three-dimensional cavity flow. For the two-dimensional 
test 25 x 25 modes were chosen for Re = 100 and 400, and 31 x 31 modes for 
Re = 1000. Stream lines and velocity vectors for the driven cavity at these Reynolds 
numbers are shown in Figs. 2 and 3, respectively. The values of the minimum 

,*. *, . , . . _ _ A . . . . . ” “. 

1 

. ..#I” , 
0.2 1:::: : : : : : : : ‘ . ‘,.” I 

“... ~. 1 ‘ *. . . ..I 
._j~..<.<“j.‘ I 

o/ ;=1,1I1,1?: 1 
0 0.2 0.4 0.6 0.8 1 

01 :‘::::: ,:', 1 

0 0.2 0.4 0.6 0.8 1 
X 

i . , , . . . . . I .  _ -  . -  -  _ _ , , , ,  , . . ‘ .~ 

. , . .  .  .  .  .  .  .  _ _ .  -  I  ,  ,  ,  .  

,  .  .  .  .  .  .  .  _ .  c _ *  _ ,  ,  ,  .  I  

. , . , . . . .  - - - - *  .  .  . . I  

, . . , , ,  - * . - _ . . . ,  
.  .  .  ,  .  .  .  .  .  1 .  .  > ,  .  ,  ,  

- - - - - -L- .L- , i  :  
”  : :  :  ,i; : : ; ; : : *  

0 0.2 0.4 0.6 0.8 1 
X 

FIG. 3. Flow direction vectors for (a) Re = 100, (b) Re = 400, ((c) Re = 1000. 
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streamfunction of the primary vortex center compute by the pse~dospe~t~a~ 
method are, with increasing Reynolds numbers, I),~,, = -0.10367, - O.f1370, and 
-0.11619. These are in good agreement with the fine grid results (129 x 129) re 
ted by Ghia et al. [213 (i.e., timin= -0.10342, -0.11391, and -0.11793). T 
plots reproduce, in the lower corner region, small pockets of recirculating flow 
corresponding to positive dimensionless streamfunction values. Figures 4 and 5 
show the plot of the profiles of both horizontal velocity along the vertical centerhne 
and vertical velocity along the horizontal centerline for all the aforementione 
Reynolds numbers. The present results agree well with those reported in [2lj for 
all cases with agreement up to the third decimal place. This agreement indicates 

Ghia et al. 
C Re = 100 
Ll Re = 400 
Clf?e = 1000 

a.Fie= 100 

FE. 5. Velocity profiles on horizontal centerline of a square cavity. 
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that the resolution of thin boundary layers by the pseudospectral method is suf- 
ficiently high and gives confidence that the approach is correct and consistent. Once 
the test demonstrated the method for two dimension, the three-dimensional flow 
was tabulated. 

Computational results for a three-dimensional cavity flow with Re = 100, 400, 
and 1000 are given in Figs. 6, 9, and 12. Displayed are the velocity profiles of the u 
component on the vertical centerline and the u component on the horizontal cen- 
terline of the plane z = 0.5. The two-dimensional results are shown for comparison. 
These plots clearly indicate that the three-dimensional boundary affects the flow 
even at low Reynolds numbers. In Fig. 9a and 9b for Re = 400, the flow motion is 
found to be reduced in strength compared to Re = 100. As expected, for a high 
Reynolds number Re = lOOO), this boundary effect becomes more prominent, as 
shown in Figs. 12a and b. An attempt was made to compare the velocity results 
with those of Takami and Kuwahara 1291 (Fig. 3) and Goda [4] (Figs. 8 and 9), 
but an exact comparison was not possible because of insufficient detail. 

More details of the flow can be understood if we look at the flow structure in the 
different positions of the xy and yz planes. The xy plane velocity vector plots for 
Re = 100 and 400 at positions z = 0.982, 0.962, 0.75, and 0.5 are presented in Figs. 
7a-d and Figs. load, respectively. Due to the boundary layer effect by the side 
wall, the results show that the deviation from the two-dimensional case is greatest 
near the side wall, as one would expect. Although flow patterns in the symmetry 
plane are similar to those of a two-dimensional flow, the strength is reduced. 
Similarly, the results for Re = 1000 at z = 0.975, 0.956, 0.75 and 0.5 in Figs. 13a-d 
show the same trend, except that the boundary layer effect is more pronounced. 

The yz plane flow patterns for Re = 100 and 400 starting from the upstream to 
the downstream at x = 0.962, 0.854, 0.5, 0.146, and 0.0381 are plotted in Figs. 8ae 
and Figs. lla-e, respectively. Based on the plotted velocity vectors, one can easily 
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FIG. 12. Cubic cavity velocity profiles for Re 
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distinguish whether the w  component velocity flows inward or outward since 
without the w  component velocity, the u component velocity shoul 
Note that the flow patterns are not visible in some places due to ver 
of both u and w. The vector plots are normalized by the largest vect 
displayed. As indicated in these figures for 0.5 <z < 1, genera 
velocity starts with an inward (negative) flow downstream a 
to an outward (positive) flow toward the upstream. 
downstream yz plane at x = 0.854, at the bottom a minor ou 
while for Re = 400 at x = 0.962 and 0.854, a small recirculati 
bottom. In the yz plane at x = 0.5, two distinct secondary vortices are found that 
gradually shift toward the corners with increasing Reynolds numbers For 
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Re = 1000, yz plane flow patterns are shown in Figs. 14a+ at x = 0.975, 0.871, 0.5, 
0.129, and 0.025. The flow structure is similar except that two more small secondary 
vortices appear at the upper corner of the side walls, and the distortion of v com- 
ponent is more severe. The presence of Taylor-Gbrtler-like longitudinal vortices for 
Re = 1000 could not be established. For Re > 1000, their presence remains to be 
determined; this is a task for future study. 

8. CONCLUSIONs 

The three-dimensional Navier-Stokes equations using a primitive variable for- 
mulation have been solved by a Chebyshev pseudospectral matrix metho 
three-dimensional driven-cavity flow by using a time-splitting technique. In the 
solution approach, the continuity equation is satisfied everywhere in the interior 
and on the boundaries, except at the corner singular points. This eliminates the 
need for momentum-equation-derived Neumann boundary conditions on the 
pressure. 

The key feature of the work presented is that the resulting t~~ree-dime~s~o~a~ 
direct matrix inversion for the pressure Poisson equations is reduced to simple one- 
dimensional matrix operations by employing eigenfunction expansions. Since only 
one-dimensional matrices are involved, this formulation avoids the large storage 
normally associated with three-dimensional solutions of Poisson equations, The 
approach permitted storage of the overall inverted matrix coefficients that were 
applied during integration in the time domain using only the limited storage of a 
VAX 1 l/780. 

Results for a two- and three-dimensional driven cavity flow have been compared 
for Re = 100, 400, and 1000. For all of the Reynolds numbers studied in this paper, 

aylor-Giirtler-like longitudinal vortices were not observed, and this topic remains 
an open question for Re > 1000. 
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